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I. The following result (as well as variations of it) is due to A. Wintner
[8, pp. 685-686]:

THEOREM a. Let ~ be a real function, Riemann integrable on every
[e, 1], 0 < e < 1. Suppose I e LV~'II ~(ke) converges as e -> 0+. Then the
improper integral f ~ + ~ converges and to the same limit.

This result is contained implicitly in Theorem 3 of A. E. Ingham's paper
[3]; cf. Section 1 of [4].

Theorem a, which looks quite innocent, is actually strongly connected
with the Prime Number Theorem (P.N.T.). For its proof uses a fact leading
in an elementary and simple way to the establishment of the P.N.T.
Conversely, set, as usual, for every real x ~ I,

l/I(X) = L log P (1)

where the sum is taken over all ordered pairs (p, m) for which p is a prime

I For a real x, Ix I is the integral part of x.
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and m a natural number satisfying pm ~ X (an "empty" sum is 0). It is well
known that the P.N.T. follows in an elementary way from the relation

lim 'II(x)lx = 1.
x-.oo

(2)

As indicated in [4, Section 1), setting ¢(x) == 'II(x - 1) - X-I, one shows by
elementary means thateI:~I~~1¢(ke) converges as e -4 0+. By Theorem a,
fL ¢ converges. But this implies, in an elementary way, the relation (2). Cf.
also [8, p. 685).

2. Our purpose is to present a theorem similar to Theorem a but simpler,
from which the P.N.T. readily follows. Instead of requiring Riemann
integrability and studying sums based on partitions into subintervals of
length e, where e varies continuously, we shall restrict ourselves to functions
which are constant on each (l/(n + 1), lin), n = 1,2,... , and to Riemann
sums based on partitions (0, lin, 2In,..., 1), n = 1,2,....

This theorem, like Theorem a, is of independent interest from the point of
view of Real Analysis and Integration Theory and in Sections 3-11 we shal1
study it and related results from that point of view without recourse to
Theorem a. It is

THEOREM I. Let f be a real step function:

f(x) = an throughout (l/(n + 1), lin j,

namely,

f(x) = a[ l/x] throughout (0, I].

Suppose the special sequence of Riemann sums

n = 1,2,... ,

(3)

n

Bn = (lin) L f(kln),
k=l

n= 1,2,..., (4 )

converges. Then so does the improper Riemann integral n+ 1, and to the
same limit.

To derive from Theorem I the P.N.T., set, with (1),

(5)

Given mappings g, h of the natural numbers into the reals, we denote, as
usual,

640/40/2-7

(g * h)(k) = L g(j)h(klj),
jlk,F;d

k= 1,2,... , (6)
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so that [2, p. 559, (2.5)]

n n [nlkl

I (g * h)(k) = ~ ~ g(j) h(k),
k=l k=l j=1

n = 1,2,.... (7)

Denoting by 1 the constant function I, we have by (6), for k = 1,2,...,
(I * I)(k) = d(k), the number of positive divisors of k. Hence, by (7),

n n n lnJ~ d(k)= I (1*1)(k)= \' -,
k=l k=1 k=1 k

n = 1,2,....

A classical result of Dirichlet [2, p. 560, (2.7) l therefore yields, for
n = 1,2,... (y being Euler's constant),

k~l l~ J=nlog n+(2Y-I)n+O(y!n).

We shall use also the formula [2, p. 559, (2.6)1

(8)

n

~ lfI(n/k)=nlogn-n+O(1 + log n),
k=1

n = 1,2,.... (9)

Now (4) applied to (5) gives, in view of (8) and (9), En -+ - 2y. Hence
Theorem I implies that fL f converges. According to the end of Section I,
to obtain an elementary proof of the P.N.T. it is enough to provide an
elementary proof that f ~ + ¢ converges, where ¢(x) == lfI(X - I) - X- I. This
convergence, in turn, follows at once by the fact that

1 1 I

f
(f-¢)=f (x- 1_ [x-'])dx= lim f (x- I

- [x-'])dx
0+ 0+ n~oo lin

n .1/(k-l)

lim L J (x- 1- [x-1])dx
n~oo k=2 Ilk

n

= lim L 10gk-log(k-I)-(1/k)=I-y.
n--+oo k=2

Thus, an elementary proof of Theorem I (even only for some class of
functions including (5)) will yield a new elementary proof of the P.N.T.

A derivation of Theorem I from Theorem a is given in Section 12.

3. We shall assume henceforth (3) with real an and investigate the
relationship between convergence of n+ f and that of B n' In this section we
make some simple observations.
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LEMMA I. The improper integral f ~ + I converges iff the sequence J: /n I
does.

Observe that such a result does not hold in general, even for a step
function. Consider, e.g., the function F defined on (0, 1] as follows. Let
x E (1 I(n + 1), 1In], n a positive integer, and let xn be the midpoint of that
interval. If x E (I/(n + 1), xn], we set F(x) = n2

; otherwise, F(x) = _n 2
•

Then J:/n F = 0 for n = 1,2,... , but clearly fL F diverges.

Prool 01 Lemma 1. Suppose J:/n I converges to L. Let e > O. Let no be
an integer ~ 1 such that

IL-{ II<e
I/n

whenever n ~ no.

Suppose 0 < 0 < Iino' We shall show that IL - nil < e. Let 0 E
[I/(n l + 1), Iln l), n l a positive integer~no' Then nl lies between J:/nJ
and f :/(n I + I) f Since the last two integrals differ from L by less than e, so
does ni

Since, for n= 1,2,... , J:/(n+I)/=LZ=IS:;~k+ll/=LZ=lak/[k(k+ 1)],
the convergence of fL I is equivalent to that of L~I ak/[k(k + 1)].

THEOREM 1. Suppose (an)~= I is monotone. Then Bn converges iff JL I
converges, in which case limn~oo Bn= n+ f

Proof The claims follow from the theorem that if a real function F is
monotone on (0, 1], then (1 In) L Z= I F(kln) converges iff fL F does, in
which case both limits are equal (compare [1, pp. 222-225] and [7, p. 79]).

4. THEOREM 2. Suppose, throughout (0, 1], III (; g where g is a real
lunction, monotone nonincreasing on (0, 1], with n+ g < 00. Then

'I
Bn~Jo+f

Proof By Theorem 3 and Definition 4 of [5], I is dominantly integrable.
(In that paper "decreasing" means "nonincreasing".) Hence, by Theorem 3
of [6], for every Q-sequence (f/Jn)~= I cor~esponding to get) == t,
f/Jn(f) ~ n+ f Perhaps the simplest such f/J n is the arithmetic mean of the
values of the function at lin, 2In,... , nln (take, in Definition 1 of [6],
g(x) == 1, c5 = 1/2, den) == n, cYl == 1, tJnl == j/n, Tyl == j/n, B = 1 and M = 2).
ThusBn~fLf

EXAMPLE 1. Let 0 (; a < 1 and suppose an = O(na). Then, for some
constant c and all xE(O,I], I/(x)1 = la(l/xll(;c[Ilx]a(;cx- a. By
Theorem 2, B n ~ J~+ f
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5. From (4) and (3),
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n

B n= (lin) L a[nlkl'
k=l

n = 1,2,.... (10)

Given integers 1::;;; j ::;;; n, let aj(n) be the number of integers k for which
[nlk] =j. By (10),

n

Bn = (lin) L aj(n)aj ,
j=l

n = 1,2,.... (11 )

Observe that for integers 1::;;; j::;;; n, ain) is the number of integers in
(nl(j+ 1), nlj], namely,

aj(n) = [nlj] - [nl(j + 1)]. (12 )

Set
n

A n = L aj/[j(j+ 1)],
j~l

n = 1,2,..., (13)

so that, by the sentence preceding Theorem 1, f ~ + f converges iff A n does, in
which case An --+ f~+ f

(13) and (12) readily yield, for integers 1 ::;;; n I ::;;; n,

(14)

THEOREM 3. Suppose an is bounded below or above and B n converges.
Then so does An' (See also Theorem 4.)

Proof We may assume an is bounded below (otherwise, consider -an)
and, in fact, by 0 (if by some a, consider an - a). Suppose An --+ 00. Choose
n l ~ 1 with An, ~ B + 2, where B = limn~oo B n. Let nz > n 1 be an integer
> I:j;'llaJ If n ~ nz' then by (11) and (14),

n, n

=A n,-(l/n ) L ain )aj -(1ln ) L ain)aj < 1,
j=l j~nl+l

so that B n > B + 1, a contradiction.

6. Theorem 3 can be strengthened.

THEOREM 4. Assume the hypotheses of Theorem 3. Then A n --+

limn~oo B n •

To prove Theorem 4 we need
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LEMMA 2. For n = 1, 2,... , set
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Aj(n) = ({n/U + I)} - {n/j})/n, j = 1,2,..., n, (15)

where, for every real x, {x} is its fractional part x - [x]. Suppose each
an ~ 0, An converges and so does

n

L n== L Ain)aj .
j~l

(16)

Then limn --> <Xl L n= 0.

Proof of Lemma 2. Suppose not. Then for some b> 0, ILnl ~ b for all
n ~ some no ~ 1. Hence 2::;,"=2IL n/(n log n)1 diverges, as 2::;,"=2 1/(n log n)
does. We shall therefore prove that 2::;,"=2IL n/(n log n)1 converges.

We first show

00

L IAin)I/(n log n) = O(r 2).
n=j

Since, for j ~ 2, Aij) = I/U + 1) and

00 <Xl 00

.L IAin)I/(n log n) < L n- 2< f. dx/x 2<2//,
n=j2 n=j2 J2-1

it is enough to prove that

j2-1

I IAin)I/(n log n) = O(r 2).
n~j+ 1

For j ~ 3 set

j2-1

I IAin)I/(nlogn)= I' + \~"
n=j+1 j j

where

j-I (k+l)j-1
I' = I L IAj(n)l/(n log n),
j k= 1 n=kU+ I)

j-2 (k+ I)U+ 1)-1

I" = I I IAin)I/(n log n).
j k = I n ~ (k + I)j

If j ~ 2, 1 ~ k ~ j - 1 and kU + 1) ~ n ~ (k + l)j - 1, we can set

(17)

(18)

n = kj + m = kU + 1) + m - k, 0< m < j, °~ m - k < j + 1,
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so that, by (15), An(j) = -1/[j(j + 1»). Hence, if j~ 2,

I I

j - I (k + l)j - 1

L
J

. I = [j(j+ 1»)-1 L L (nlogn)-l
k=1 n=kU+l)
P-I

~ [j(j+ 1»)-1 L (nlogn)-I
n=j+ I

j'- I

< [j(j + 1»)- I J. (x log x) - I dx
}

<r 2 10g log xjf =r 2 10g 2.

If j~ 3, then

(k+I)U+I)-1

L (n 210g n)-I
n=(k+ Il.i

j-2
< L (k+ 1)[(k+ l)j)-210g -I[(k+ l)j)

k=1

.i-I .

< (/logj)-I L k- I < (/logj)-IJ) dx/x=r 2.
k=2 I

So (18) and hence (17) are established.
Now, for every N ~ 2,

II' /II n

L ILn/(n log n)1 ~ L (n log n)-I I IAin)1 Qj
n=2 n=2 .i=1

II'

=QI L IAI(n)1 (nlogn)-I
n=2
II' II'

+ L Qj L IAj(n)1 (n log n)-I
j=2 n=j

00 00

~QI L: (n 210gn)-I+ a L:Q.;/[j(j+l)],
n=2 j=1

a being some constant, which completes the proof of the Lemma.

Proof of Theorem 4. As in the proof of Theorem 3, we may assume each
Qn~O. For n= 1,2,..., by (11), (12), (13), (15), and (16),
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n

Bn-A n= (lIn) L ([,y-I] - [nU+ I)-I] - (nrl-nU+ 1)-I))aj
j=1

n

= L Ain)aj = Ln'
j=1

By Theorem 3 and Lemma 2, L n-+ 0. Hence An -+ limn~ ex; Bn.

187

(19)

7. THEOREM 5. For every 15 E (0, 1) let V(t5) denote the total variation
of f on [15,1] (which is clearly finite). Suppose limn~CXJ(lln) V(lln) = 0.
Then An converges iff Bn does, in which case

lim An = fI f = lim Bn'
n-tet) 0+ n·....Hf)

Proof By (19), Bn-An == Ln' So it is enough to show L n-+ 0. But by
(16) and (15), for n = 2, 3,... ,

ILnl = (lIn) I(nl(n + I))an+ jt2 {nlj}(aj_1 - aj) I

n

~ lanl(n + 1)1 + (lin) L laj - aj_11
j=2

~ (lIn) (Iall + Ian -all + jt2Iaj-aj-ll)

~ (I/n)(1 all + 2V(lln)) -+ 0.

EXAMPLE 2. Let an ==n/log(n + 1), so that An diverges. Then, for
n = 2, 3,..., an > an -I so that V( lin) = (n/log(n + 1)) - (l/log 2) and, hence,
(lin) V(lln)-+ 0. Therefore, by Theorem 5, Bn diverges.

EXAMPLE 3. Let an = n when n = 2\ k = 0, 1,2,... , an = ° otherwise.
Then

00 00 oc

An -+ L a)[jU + 1)] = L 2k/[2k(2k + 1)] = L I/(2 k + 1)
j~ I k=O k=O

but Bn diverges (see Section 9 below). On the other hand, t5V(t5) is bounded
in (0, 1). For let 15 E (0, 1), say 2 -k-I < 15 ~ 2-\ k an integer ~o. Then
V(t5) < 2 LJ=o 2j = 2(2k+ I - 1) and, hence, t5V(t5) < 4. Thus the relation
(lin) V(I/n) -+ °in Theorem 5 cannot be replaced by the boundedness of
15 V(15) in (0, 1).
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8. DEFINITION 1. Condition C is the following property: For every
e > 0 there is an integer no(e) ~ I such that for each integer n I ~ no(e) there
is an integer mo(e, n t ) > n1 so that, if n ~ mo(e, n t ), then

I
(I/n) . ~ ain)aj I < e.

}=n, + t

THEOREM 6. Assume Condition C. Then An converges iff Bn does, in
which case limn ~ 00 An = f ~ + f = limn ~ 00 Bn'

Proof Suppose An converges, say to A. Let e > O. Choose n,~ I such
that IA -Ani < e/3 if n ~ n,. Using Definition I, set

Let m* be an integer ~m such that if n ~ m *, then the right hand side of
(14) is <e/3. If n ~ m*, then

IA -Bnl ~ IA -An,1 + IAn, - (l/n) jtt ain)aj I

+ I (I/n) j=t+, ain)aj I < (e/3) + (e/3) + (e/3) = e.

Suppose B n converges, say to B. Let e > O. Choose v, ~ I such that
IB - B nI< e/3 if n ~ v,. Referring to Definition I, let n I be an
integer ~ no(e/3) and set p = mo(e/3, n t ). Let p* be a positive integer such
that if n ~p*, then the right hand side of (14) is <e/3. Set, finally,
n* = max(v"p,p*). Then

IB -An,1 ~ IB -Bn·1 + I An, - (I/n*) jtl aj(n*)ajl

+ I(l/n*) j=~+ t aj(n*)aj I < (e/3) + (e/3) + (e/3) = e.

THEOREM 7. Suppose An and Bn converge and to the same limit A. Then
Condition C holds.

Proof Let e > O. Let no(e) ~ I be an integer such that IAn - A I < e/3
and IB n-AI<e/3 whenever n~no(e). For every integer nl~no(e), let
mo(e, n1) be an integer >n 1 such that if n ~ mo(e, n1), then the right hand
side of (l4) is <e/3. If integers nt, n satisfy n, ~ no(e), n ~ mo(e, n1), then
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I
(lin) . ±. aj(n)aj I

]=n, + 1

n, I
.:::;; IBn - A 1+ IA - Anll + IAn, - (lin) j!;l ain)aj

< (eI3) + (eI3) + (eI3) = e.
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THEOREM 8. Let (lin) L:j=1 ain) lajl converge. Then so do An and Bn,
and limn-->oo An = limn -->00 Bn·

Proof By Theorems 4 and 7, Condition C, applied to lanl, holds. Hence
so does Condition C itself. By Theorem 4, L:~I a)[j(j + 1)] converges
(absolutely). By Theorem 6, B n converges to that infinite sum.

9. We return to Example 3 and prove that B n diverges. Let k> 4 be an
even integer. By (12),

a 1(2
k

) = 2k
-

1 = a l (2
k

- 1).

Let j be an integer. If kl2 ~ j ~ k, then a2J(2 k) = 1, while if
kl2 ~ j ~ k - 1, then 2k - 1 >2k + 2k- j - 2j - 1 = (2 j + 1)(2k- j - 1) and
hence

2k- j - 1 ~ (2 k - 1)/(2j + 1) < (2 k - 1)/2j <2k- j;

so there are no integers In ((2 k - 1)1(2 j + 1), (2 k - 1)/2 j J and therefore
a2J(2 k

- 1) = O. Hence

2k k

B 2k =2-k ~ a;(2k)a;=2- k y a2J(2 k)2j

;=1 j=O

(
(kl2l - I k )

> 2- k .2 k
-

1 + L (2 k- j - 1- 2k(2j + 1)-1)2j + ~ 2j ,
j=1 j=kl2

2k -1 k-I

B 2k _1 = (2 k _1)-1 )~ a;(2k - l)a; = (2 k - 1)-1 L a2J(2 k - 1)2j

;=1 j=O

and
(kI2)-1

B 2k-B2L ) > 2k-)(2- k - (2 k _1)-1) - (2- k + (2 k - 1)-1) \' 2j

k

+ 2- k \~ 2j
......

j=kl2

1'=1
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which -.2 as k-. 00. Hence, B n is not a Cauchy sequence and therefore
diverges.

10. Consider an arbitrary real sequence (an)~= I and a prime p >3. Since
[(p - I)/k] = [p/k] for k = 2, 3,..., p - 1, we have by (10),

Bp-Bp_l=p-1 (ap+ P~I a[p/kl + al)-(P-1)-1 (ap_l + ~I aIP/kl ) j
k=2 k=2

p-I
=p-l(a l +ap)-(p-1)-lap _I+(p-I-(p-1)-I) \' a,p/kl'

k~2

(20)

Using this observation, we give a simple example of an alternating an for
which A n converges but B n does not.

EXAMPLE 4. Let an = (-1) nn, n = 1,2,... , so that An -. -1 + log 2. For

n = 3,4"00' set bn= LZ:~ a,n/kl so that

(21 )

By (20) and (21), for every prime p >3,

Bp - Bp_ I = -p - I - 1 - 1 - [p(p - 1)rIbp'

IBp-Bp_11 > 2-(p(p-1»-llbpl > 2-(p-1)-'log(p-1).

Thus B n is not a Cauchy sequence and hence diverges.

II. THEOREM 9. Suppose (a n):;"= I is monotone and either Bn or n+ f
converges (see Theorem 1). Then an/n -. O.

Proof We may assume (an)~~ I is nondecreasing (otherwise, consider
(-an)~=I)' We may also assume each an is >0 (otherwise, consider
(an - al)~=I)' Then, for n = 1,2'00"

2n
an/n<'2(n+1)an[n(2n+1)]-1<'4 L ak[k(k+1)]-'-.0.

k=n

THEOREM 10. Suppose an is bounded below or above and Bn converges.
Then an/n -. 0.

Proof As in the proof of Theorem 3 we may assume an> 0, n = 1,2,00..
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By Theorems 4 and 7, Condition C holds. Let e > 0. By Definition 1, if
n >rno (e, no(e)), then

THEOREM 11. Suppose °<bn<bn+I' an> -bn for n = 1,2,... , fJ =
Lr~l bd[k(k + 1)1 < 00 and Bn converges. Then Bn-+ n+ f and anln-+ o.

Proof For n = 1,2,... ; let cn= an +bn>0. By Theorem 1, n- I
LZ~ I

bln/k]-+fJ. By Theorem 4, Lr=lcd[k(k+l)J=limn-->oon-1LZ~lcln/kl =
limn-->ooBn+fJ. Hence n+f=Lr=lad[k(k+l)I=limn-->ooBn. By
Theorem 10, bnln -+ 0, cnln -+ 0. Hence anln -+ 0.

12. We derive now Theorem I of Section 2 from Theorem a of Section 1.
Note that Theorem a has not yet been proved in an elementary way.

By Theorem a, it is enough to prove that limc-->o+ e LVi~1 f(ke) = B,
where B=limn-->ooBn. Let h l ,h 2 , ... E(O, IJ and satisfy hn-+O. We shall

. Ih-IJ
prove that hmn --> 00 hn Lk="l f(kh n) = B. For n = 1,2,... ,

Ih-II

I B(h;;I] - hn ~l f(kh n) I

I

Ih;;'] Ih;;'}
-1 -1 - ~ .,

= [h n 1 ~ a1k-'1h;;'11- hn L. alk-lhn'l
k=l k~l

Ih- I ]

=([h;lj-l_hn)·1 ~ a1k -'1 h;;IlIl
k~l

Ih- I ]

<hn[h;IJ-
1
.' f a1k -'1 h;;'11 I =hnIBlhn'II-+O.

k=l
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